PCSI Physique - Programme de colle 9

Semaine du 25 au 29 novembre 2024.

Cours

La question de cours peut porter sur une ou plusieurs définitions d'un des chapitres au programme, ou sur une des applications ou démonstrations vues en cours. **Un étudiant qui connaît bien son cours a la moyenne, et inversement.**

Chapitre E_4 - Oscillateurs amortis

- ullet Deux exemples : le circuit RLC et le système masse-ressort vertical amorti par frottement fluide.
- Mise sous forme canonique des équations : pulsation propre et facteur de qualité. Limite des oscillations harmoniques quand le terme d'amortissement tend vers 0.
- Résolution des équations différentielles du second ordre avec terme en y'. Recherche des solutions en e^{rt} .
- Régimes de fonctionnement : apériodique, pseudo-périodique, critique. Tracé de courbes.
- Aspects énergétiques du circuit RLC et du système masse-ressort amorti : mise en évidence de la perte d'énergie par dissipation.
- Analogie électromécanique.

Questions de cours potentielles :

- Déterminer l'équation différentielle dont q (ou u_C) est solution dans le circuit RLC série soumis à un échelon de tension. (dev I)
- Déterminer l'équation du mouvement du système masse-ressort suspendu au plafond et amorti par frottements fluides. (dev 2)
- Donner la méthode générale pour résoudre l'équation différentielle

$$\frac{d^2f}{dt^2} + \frac{\omega_0}{Q}\frac{df}{dt} + \omega_0^2 f = 0$$

et trouver la solution dans un cas (au choix du colleur) parmi Q > 1/2, Q = 1/2 et Q < 1/2.

Chapitre E_5 - Circuits linéaires en régime sinusoïdal forcé

- \bullet Equations des circuits RLC et de l'oscillateur mécanique en régime sinusoïdal forcé. Intérêt de la solution particulière.
- Recherche d'une solution particulière sous forme sinusoïdale.
- Notation complexe, intérêt pour la recherche de la solution particulière. Module et argument d'un nombre complexe.
- Dérivée et intégration en notation complexe \iff multiplication/division par $j\omega$.
- Impédances. Expressions pour le résistor, la bobine et le condensateur. Assocation d'impédances.
- Lois de l'électrocinétique en régime sinusoïdal forcé, expression de l'ARQS comme condition sur ω .
- Application : résonance en tension du circuit RLC série. Résonance en intensité du circuit RLC série.
- Bande-passante, conditions de résonance, pulsation de résonance.
- Analogie électromécanique : résonance des oscillateurs mécaniques en position/vitesse.

Questions de cours potentielles :

- Démontrer les formules des impédances de R, L, C.
- Déterminer i(t) pour le circuit RL en régime sinusoïdal forcé.
- Utiliser la notation complexe pour déterminer \underline{U}_C , amplitude complexe de la tension aux bornes de C, pour le circuit RLC série.
- Utiliser la notation complexe pour déterminer \underline{I} , amplitude complexe de l'intensité dans le circuit RLC série.
- L'expression de la grandeur complexe étant donnée, déterminer le gain en tension ou intensité pour RLC, et interpréter la courbe de gain.

Exercices

Exercices sur les chapitres E_4 et E_5 .